Design of Well Foundation

Thool Kushal P., Pawar Sachin L., Shirsath Abhishek D., Thombre Kiran B.
${ }^{1}$ Assistant Prof., Deptt of Civil Engg., Vishwaniketan's iMEET, India, kushal.thool@gmail.com
${ }^{2}$ Assistant Prof., Deptt of Civil Engg., Vishwaniketan's iMEET, India, sachinpwr1987@gmail.com
${ }^{3}$ M.E. Persuing (Const. Management, Deptt of Civil Engg., PVPIT Bavdhan, India, abhi.shirsath60@ gmail.com
${ }^{4}$ Assistant Prof., Deptt of Civil Engg., Vishwaniketan’s iMEET, India, kthombre92@ gmail.com

Abstract

Due to exposure to potential scouring action of the river water, the foundation of transmission line tower at location no. 456 of Unnao-Bareilly transmission line is proposed to be provided in the form of a well. Detailed design procedure has been carried out also SAP modeling has been made to check the hoop stresses on the steining,

Key words: Well Foundation, Well Steining, SAP Modeling.

INTRODUCTION

Due to exposure to potential scouring action of the river water the foundation of transmission line tower at location no. 456 of Unnao-Bareilly transmission line is proposed to be provided in the form of a well.

DETAILS OF TOWER

A schematic cross section of the stream together with the location is available. The details of the proposed tower and the hydraulic and geotechnical data at the site of the proposed tower are given below.

Tower type	Base width at top of pedestal (mm)	Max. compression		Max. uplift		Lateral load	
		N.C.	B.W.C (kN)	N.C. (kN)	B.W.C (kN)	N.C. (kN)	B.W.C (kN)
	23000	776	1066	529	1639	36.5	89.85

Fig. 1: Schematic cross- section of stream at location of tower No. 456

HYDRAULIC DATA

Maximum flood discharge	$=$	1680 cumecs
Maximum stream velocity	$=$	$1.94 \mathrm{~m} / \mathrm{s}$
R.L. of H.F.L.	$=$	149.4 m
R.L. of river bank	$=$	150.0 m
R.L. of river bed	$=$	142.5 m
Silt factor	$=$	0.83

SOIL CHARRACTERISTICS

- Poorly graded fine to medium sand (SP) upto 32 m from G.L.
- Average corrected SPT ‘N' value $=10$
- Angle of friction $=32^{\circ}$

The legs of the tower are placed on the pedestal having height 2.5 m having cross- section decreasing from 600x600 at bottom to 400×600 at top.

WELL CONFIGURATION

Single well with outrigger arms supporting the tower legs.

PROPORTIONING OF FOUNDATION

The foundation shall be taken adequately below the minimum scour depth. The normal depth of scour is estimated using Lacey's formula as:

$$
\begin{aligned}
\mathrm{d} & =0.473\left(\frac{Q}{f}\right)^{\frac{1}{3}} \\
& =6.79 \mathrm{~m}
\end{aligned}
$$

where,
$\mathrm{d}=$ normal depth of scour
$Q=$ design discharge in cumecs, and
$f=0.68$ Lacey's silt factor.
IRC: 78-2000 recommends that scour depth calculations for foundations may be made for a discharge larger than the design discharge. Accordingly, 20% increase in design discharge has been assumed in scour depth calculations.

Since tower is to be located in straight reach of river, the maximum scour depth $d_{\text {max }}$ is given by,

$$
\mathrm{d}_{\max }=1.27 \mathrm{~d}=8.62 \mathrm{~m}
$$

DIMENSIONING OF THE WELL FOUNDATION

From the scour considerations minimum grip length for the well foundation $=0.33 \times$ max. scour depth

$$
=2.84 \mathrm{~m} \approx 3 \mathrm{~m}
$$

However provide a grip length of 9 m as a conservative measure.

R.L. of base of well w.r.t. | HFL | $=149.4-9-8.62 \mathrm{~m}$ |
| ---: | :--- |
| | $=131.78 \mathrm{~m}$ |
| Height of well w.r.t. NGL | $=150-131.78 \mathrm{~m}$ |
| | $=18.22 \mathrm{~m}$ |,r.

Thickness of well Steining

As per IRC 78-2000 (Cl. 708.2.3)

$$
\mathrm{t}=\mathrm{Kd}^{\sqrt{l}}=1.152 \mathrm{~m}
$$

Pryvidest $=1.5 \mathrm{~m}$ for sufficient sinking effect.
Internal diameter of well $=9-1.5-1.5$
$=6 \mathrm{~m}>2 \mathrm{~m}$
as per IRC $78: 2000$ hence OK
The thickness of well cap is taken as $=1.5 \mathrm{~m}$
Thickness of top plug $=0.6 \mathrm{~m}$
(Because we are using well cap)
Height of well Curb $=0.5 \mathrm{x}$ internal diameter of well

$$
\begin{aligned}
& =0.5 \times 6 \\
& =3.0 \mathrm{~m}
\end{aligned}
$$

As per IRC 78:2000 projection $\geq 75 \mathrm{~mm}$.
Take 100 mm projection.
Size of ISA cutting edge $=150 \times 150 \times 18 \mathrm{~mm}$.

$$
=6 \mathrm{~m}>2 \mathrm{~m}
$$

as per IRC $78: 2000$ hence OK
After using AutoCAD for drawing well the length of outrigger for supporting the pedestal is coming out to be $=$ 12073.47 mm .

Taking,

$$
\begin{gathered}
\frac{l}{d}=5 \\
\frac{12073,47}{d}=5
\end{gathered}
$$

$$
\mathrm{d}=2414.69 \mathrm{~mm}
$$

Take $D=2700 \mathrm{~mm}$.
The outriggers is being tapered from 1 m to 2.7 m .
Thus, the well details are:
Total height of well
$=18.22 \mathrm{~m}$
Grip length
External diameter of well Internal diameter of well Thickness of well steining Length of outrigger
Max. depth of outrigger
Width of outrigger
$=09.00 \mathrm{~m}$
$=09.00 \mathrm{~m}$
$=06.00 \mathrm{~m}$
$=01.50 \mathrm{~m}$
$=12.08 \mathrm{~m}$
$=02.70 \mathrm{~m}$
$=00.60 \mathrm{~m}$

The proportioned well dimensions are shown in fig. 2 and 3

Fig. 2: Plan of well foundation (all dimensions are in mm)

Fig. 3: Sectional elevation of well foundation at section X-X (all dimensions are in mm)

ESTIMATION OF WELL CAPACITY

1. Uplift capacity

The safe uplift capacity, $\mathrm{Q}_{\text {safe }}$, may be calculated as the submerged weight of the well, conservatively ignoring the effect of side friction. Thus,

$$
\begin{aligned}
\mathrm{Q}_{\text {safe }}= & \frac{\pi\left(9^{2}-6^{2}\right) \times 18.35 \times(25-10)}{4}+(4 \times .5 \times(1+2.7) \times 12.08 \\
& \quad \times 0.6 \times(25-10)) \\
=9728.138 \mathrm{kN}>1639 \mathrm{kN}, & \text { O.K. }
\end{aligned}
$$

Hence the well is safe in uplift.

2. Axial compression load capacity

The effect of skin friction is conservatively ignored and the axial load capacity is taken as the base resistance with a factor of safety of 3 . The base resistance, $\mathrm{Q}_{\text {safe }}$, is calculated as
$\mathrm{Q}_{\mathrm{bsafe}}=\frac{\bar{\sigma}_{v} \text { at tip } \mathrm{x}\left(N_{q}-1\right) \times A_{p}}{\text { F.O.S. }}$

Where,
$\bar{\sigma}_{v} \quad=\quad$ Effective overburden pressure at base
$\mathrm{N}_{\mathrm{q}} \quad=\quad$ Bearing capacity factor
$A_{p} \quad=\quad$ Area of base of well
F.O.S. $=$ Factor of safety

For soil at base of well, $\varphi=32^{\circ}$, hence $N_{q}=24.36$

$$
\begin{aligned}
\therefore \mathrm{Q}_{\text {bsafe }} & =(9 \times 10) \times(24.36-1) \times\left(\frac{\pi \times 9^{2}}{4 \times 3}\right) \\
& =44582.9696 \mathrm{kN}>4264 \mathrm{KN}
\end{aligned}
$$

Hence OK.

3. Lateral load capacity

The lateral load acting on the well consists of two components :

Design lateral load corresponding to B.W.C. $=359.4 \mathrm{kN}$. Lateral load due to water current force corresponding to H.F.L. acting on curved surface area of the well. Intensity of water current pressure at $\mathrm{HFL}=0.52 \mathrm{KV}^{2}$
Where,
$\mathrm{V}=$ Velocity of the current at the point where the pressure intensity is being calculated, in meters per second.
$\mathrm{K}=\mathrm{a}$ constant having a value of 0.66 for circular piers.

$$
\begin{aligned}
\mathrm{P} & =0.52 \times 0.66 \times(\sqrt{2} \times 1.94)^{2} \\
& =2.58 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Water current (lateral) force $=0.5 \times 8.62 \times 2.58 \times 9$

$$
=100.07 \mathrm{kN}
$$

$$
\text { Total lateral force }=359.4+100.07
$$

$$
=459.47 \mathrm{kN}
$$

$K_{a}=0.31$ and $K_{p}=3.25$, for $\varphi=32^{\circ}$.
Let the total lateral is acting at a height ' h ' above base of well.

$$
\begin{aligned}
459.47 \times \mathrm{h} & =(100.07 \times 14.74)+359.4(18.22+2.5) \\
\mathrm{h} & =19.42 \mathrm{~m} .
\end{aligned}
$$

\therefore Elevation of resultant lateral load $=19.42 \mathrm{~m}$.
Safe lateral capacity, $\mathrm{H}_{\text {safe }}$, may be computed as,
$\mathrm{H}_{\mathrm{safe}}=\frac{0.5 \gamma\left(K_{p}-K_{a}\right)\left(D-2 D_{1}\right) d_{e}}{\text { F.O.S. }}$
Where,
$\mathrm{D}_{1}=\frac{3 h \pm \sqrt{9 h^{2}-6 D\left(h-\frac{D}{3}\right)}}{2}$
$\mathrm{h}=$ Height of resultant lateral load $=19.42 \mathrm{~m}$ above base
$\mathrm{D}=$ Grip length $=9 \mathrm{~m}$
$\left.\begin{array}{lll}\mathrm{K}_{\mathrm{p}} & =3.25 \\ \mathrm{~K}_{\mathrm{a}} & = & 0.31\end{array}\right\}$ For $\phi=32^{\circ}$
$\gamma=$ Submerged unit weight of soil $=10 \mathrm{kN} / \mathrm{m}^{3}$
F.O.S. $=$ Factor of safety, $=3.0$
$\mathrm{d}_{\mathrm{e}}=$ External dia. Of well $=9 \mathrm{~m}$
$D_{1}=54.17$ and 4.09 (we have to select lower value)

$$
\begin{aligned}
\mathrm{H}_{\text {safe }} & =\frac{0.5 \times 10 x(2.94)(9-8.18) x 9}{2} \\
& =488.187>459.57 \text { O.K. }
\end{aligned}
$$

4. Stability check of outriggers

Clear span of cantilever $\left(l_{o}\right)=12.07 \mathrm{~m}$.

$$
\begin{aligned}
\mathrm{D}_{\mathrm{av} .} & =\frac{2.7+1}{2} \\
& =1.85 \mathrm{~m} \text { or } 1850 \mathrm{~mm} \\
\mathrm{~d}_{\mathrm{av}} & =1775 \mathrm{~mm} \quad \mathrm{~b}=600 \mathrm{~mm}
\end{aligned}
$$

a) $25 \mathrm{~b}=15000 \mathrm{~mm}$
b) $\frac{100 b^{2}}{d_{a v_{0}}}=20281.69 \mathrm{~mm}$

Take smaller value between (a) and (b) $=15000 \mathrm{~mm}$ $1_{0}<15000 \mathrm{~mm}$ O.K.

DESIGN OF WELL COMPONENTS

1. Design of outriggers

Due to the large moments coming on the critical section a no. of trials have to be done because of the change in the value of effective depth after the placement of the bars in the cross section. Final calculations has been shown here.

$$
\begin{aligned}
\mathrm{L}_{\mathrm{eff}} & =1_{\mathrm{o}}+(1.5 / 2) \\
& =12.07+.75 \\
& =12.82 \mathrm{~m}
\end{aligned}
$$

Load $(\mathrm{P})=1085 \mathrm{kN}$
Taking

$$
\text { Overall depth }(D)=2700 \mathrm{~mm}
$$

Effective depth (d) $=2500 \mathrm{~mm}$
Effective cover (d') $=200 \mathrm{~mm}$
Grade of concrete $=$ M25
Grade of steel $=\mathrm{Fe} 415$
Self-weight of beam

$$
\text { Volume of } \mathrm{RCC}=0.5(2.7+1) \times 12.82 \times 0.6
$$

$$
=14.2302 \mathrm{~m}^{3}
$$

Weight of beam $=25 \times 14.2302 \mathrm{~m}^{3}$ $=355.755 \mathrm{kN}$

Factored Moment

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =1.5 \times(1085 \times 12.48+355.755 \times 6.41) \\
& =23732 \mathrm{kNm} \\
& =23732 \times 10^{6} \mathrm{Nmm} . \\
\frac{x_{u, \max }}{d} & =\frac{0.0035}{0.0055+\frac{0.87 f_{y}}{E_{S}}} \\
& =0.4848 \\
\mathrm{M}_{\mathrm{u}, \lim } & =.362\left(\frac{x_{u, \max }}{d}\right)\left(1-\left(0.416 \times \frac{x_{u, \max }}{d}\right)\right) \times \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2} \\
& =13134.375 \times 10^{6} \mathrm{Nmm}
\end{aligned}
$$

Since $M_{u}>M_{u}$, lim section is to be designed as doubly reinforced.
$\mathrm{P}_{\mathrm{t}, \lim }=41.61\left(\mathrm{f}_{\mathrm{ck}} / \mathrm{f}_{\mathrm{y}}\right)\left(\frac{x_{\mathrm{u}, \max }}{d} \quad=1.2 \%\right.$
$\Delta \mathrm{A}_{\mathrm{st}}=\frac{M_{u}-M_{u, \pi \mathrm{~m}}}{0.87 f_{y}(d-d i)} \quad=12761.84 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st, req. }}=12761.84+\mathrm{A}_{\text {st, lim }}$

$$
=30567.44 \mathrm{~mm}^{2}
$$

Provide 28 nos of 36ϕ bars and 6 nos. of 22ф bars.

$\mathrm{A}_{\text {st,prov. }}=30781.32>30567.44 \mathrm{~mm}^{2}$

Calculation of new d

$30781.32 \mathrm{~d}=71735808.84+6 \mathrm{x}(\pi / 4) \times 22^{2} \times 2337$
$\mathrm{d}=2504 \mathrm{~mm} \approx 2500 \mathrm{~mm}$. OK
$\mathrm{d}^{\prime}=196 \mathrm{~mm}$
Calculation of $\mathbf{A}_{s c}$
$\Delta \mathrm{A}_{\text {st, prov. }}=30781.32-17805.6$

$$
\begin{aligned}
& =12975.72 \mathrm{~mm}^{2} \\
\mathrm{~A}_{\text {sc,req. }} & =\frac{0.87 f_{y} x \Delta \Delta A_{s t}}{f_{s c}-0.447 f_{c k}} \\
\mathrm{f}_{\text {sc }} & =0.0035 \frac{\left(x_{u \text { max }}-d^{f}\right)}{x_{u \text { max }}} \\
& =353.308 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~A}_{\text {sc, req. }} & =13693.165 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 14 nos. 36 bars

$$
\begin{aligned}
\mathrm{A}_{\mathrm{sc}, \text { prov. }} & =14250.26428 \mathrm{~mm}^{2}>13693.165 \mathrm{~mm}^{2} \\
\mathrm{P}_{\mathrm{c}} & =14250.264 /(600 \times 2504) \times 100 \\
& =.9485 \\
\mathrm{P}_{\mathrm{t}} & =2.05 \\
\mathrm{P}_{\mathrm{c}}^{*} & =\frac{0.87 f_{y}\left(p_{\mathrm{t}}-p_{t / \mathrm{lim}}\right)}{f_{s c}-0.447 f_{c k}} \\
& =0.8969 \\
\mathrm{P}_{\mathrm{c}}>\mathrm{P}_{\mathrm{c}}^{*} & \text { (hence beam is under reinforced) O.K. }
\end{aligned}
$$

2. Side face reinforcement

Side face reinforcement has to be provided because depth of the beam is more than 750 mm .
Minimum area $=0.001 \times 600 \times 2700$

$$
=1620 \mathrm{~mm}^{2}
$$

At a spacing not exceeding 300 mm .
Provide 8 nos. of 12ϕ bar at each face at equal spaces.

3. Design of shear reinforcement.

Shear at critical section

$$
\begin{aligned}
& \mathrm{V}=0.5 \times 3.7 \times 12.07 \times 25 \times 0.6+1085 \mathrm{kN} \\
&=1419.94 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{u}}=1.5 \mathrm{~V}=2129.94 \mathrm{kN} \\
& \mathrm{M}_{\mathrm{u}}=1.5\left(\left(334.94 \times \frac{12.07}{2}\right)+(1085 \times 11.73)\right) \\
&=22122.61 \mathrm{kNm} . \\
& \tan \beta=\frac{1.7}{12.07}=.141 \\
&(\beta=\text { angle of sloping surface with the horizontal }) \\
& \tau_{\mathrm{v}}=\frac{V_{u}-\frac{M_{u}}{d} \tan \beta}{b d} \\
&=0.588 \mathrm{~N} / \mathrm{mm}^{2} \\
& 100 \frac{A_{s}}{b d} \\
& b=\frac{30781.32}{600 \times 2504} \times 100 \\
&=2.05
\end{aligned}
$$

From table 19 of IS 456:2000
$\tau_{\mathrm{c}}=0.826 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{c}}>\tau_{\mathrm{v},}$ Hence section is safe in shear, and minimum shear reinforcement should be provided.
Minimum reinforcement should be provided as per the following formula.

$$
\frac{A_{s v}}{b s_{v}} \geq \frac{0.4}{0.87 f_{y}}
$$

Where,
$\mathrm{A}_{\mathrm{sv}}=$ total cross sectional area od stirrups effective in shear.
$\mathrm{s}_{\mathrm{v}}=$ stirrup spacing along the length of the member.
$\mathrm{b}=$ breadth of the beam ($=600 \mathrm{~mm}$)
$\mathrm{f}_{\mathrm{y}}=$ Characteristic strength of stirrup reinforcement in $\mathrm{N} / \mathrm{mm}^{2}$. ($415 \mathrm{~N} / \mathrm{mm}^{2}$)

Provide 2-legged 10mm dia. Bars.

$\mathrm{A}_{\mathrm{sv}}=157.08 \mathrm{~mm}^{2}$.
Putting the values in above formula we get
$\mathrm{S}_{\mathrm{v}}=236.31 \mathrm{~mm}$.
Give shear reinforcement at $230 \mathrm{mc} / \mathrm{c}$.

4. Development length

Grade of Concrete $=$ M25
Grade of steel $=\mathrm{Fe} 415$
The development length L_{d} is given by
$\mathrm{L}_{\mathrm{d}}=\frac{\phi \sigma_{s}}{4 \tau_{\mathrm{bd}}}$
Where,
$\Phi=$ nominal diameter of the bar.
$\sigma_{\mathrm{s}}=$ Stress in bar at the section considered at design load

$$
=0.87 \mathrm{f}_{\mathrm{y}} \text {), and }
$$

$\tau_{\text {bd }}=$ Design bond stress ($=1.4$ for M25)
$\mathrm{L}_{\mathrm{d}}=\frac{0.87 \times 415 \phi}{4 \times 1.4}$
$\mathrm{L}_{\mathrm{d}}=64.47 \phi$
For 36 mm dia. bar, $\quad \mathrm{L}_{\mathrm{d}}=2320.92 \mathrm{~mm}$
For 22 mm dia. bar $\quad \mathrm{L}_{\mathrm{d}}=1418.34 \mathrm{~mm}$

5. Deflection

The total deflection shall be taken as the sum of short-term deflection and the long term deflection.
Short term deflection
We have

$$
\begin{array}{rlr}
\mathrm{b} & =600 \mathrm{~mm} & \mathrm{D}=2700 \mathrm{~mm} \\
\mathrm{f}_{\mathrm{ck}} & =25 \mathrm{MPa} & \mathrm{f}_{\mathrm{y}}=415 \mathrm{MPa} \\
\mathrm{~W} & =1085 \mathrm{kN} & \mathrm{l}=12830 \mathrm{~mm} .
\end{array}
$$

$\mathrm{M}=15821330000 \mathrm{Nmm}$.
$\mathrm{I}_{\mathrm{gr}}=\frac{b D^{\mathrm{s}}}{12}=9.84155 \times 10^{11} \mathrm{f}_{\mathrm{cr}}=0.7 \sqrt{f_{c k}}=3.5 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{y}_{\mathrm{t}}=\mathrm{D} / 2=1350 \mathrm{~mm} \quad \mathrm{M}_{\mathrm{cr}}=\frac{f_{\mathrm{cr}} I_{g r}}{y_{\mathrm{t}}}=2.6 \times 10^{9} \mathrm{Nmm}$
$\mathrm{E}_{\mathrm{c}}=5000 \sqrt{f_{c k}}=25000 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{m}=8$
Let x be the depth of neutral axis, then taking moment of transformed section about N.A.
We get,
$\mathrm{x}=980.48 \mathrm{~mm}$
$\mathrm{I}_{\mathrm{cr}}=\frac{b x^{\mathrm{s}}}{3}+(\mathrm{m}-1) \mathrm{A}_{\mathrm{sc}}\left(\mathrm{x}-\mathrm{d}^{\prime}\right)^{2}+\mathrm{mA}_{\mathrm{st}}(\mathrm{d}-\mathrm{x})^{2}$
$\mathrm{I}_{\text {cr }}=8.355 \times 10^{11} \mathrm{~mm}^{4}$
$\mathrm{I}_{\text {eff. }}=\frac{I_{r}}{1.2-\frac{M_{r}}{M} \frac{Z}{d}\left(1-\frac{x}{d}\right) \frac{b_{W}}{b}}$
$\mathrm{I}_{\mathrm{eff}}=7.49 \times 10^{11}$
Since, $\mathrm{I}_{\text {eff }}<\mathrm{I}_{\mathrm{cr}}$, hence $\mathrm{I}_{\text {eff }}=8.355 \times 10^{11} \mathrm{~mm}^{4}$
$\Delta_{\text {short term }}=\frac{W l^{\mathrm{s}}}{3 E I_{\text {eff }}}=36.56 \mathrm{~mm}$

6. Deflection due to shrinkage

$\alpha_{\mathrm{cs}}=\mathrm{k}_{3} \Psi_{\mathrm{cs}}{ }^{2}$
here, $\mathrm{k}_{3}=0.5$
$\Psi_{c s}=\mathrm{k}_{4} \frac{E_{\text {CS }}}{D}, \epsilon_{c s}=0.0003$
$\mathrm{k}_{4}=0.72 \mathrm{x} \frac{P_{\mathrm{t}}-P_{c}}{\sqrt{P_{\mathrm{t}}}}$
where
$\mathrm{P}_{\mathrm{t}}=2.05, \quad \mathrm{P}_{\mathrm{c}}=0.95$
Putting the values we get
$\alpha_{\mathrm{cs}}=5.06 \mathrm{~mm}$

Deflection due to creep
Calculation of deflection due to creep is same as that of short term deflection but with modified E given by
$\mathrm{E}_{\mathrm{ce}}=\frac{E_{C}}{1+\theta} ; \theta$ being the creep coefficient.
$\mathrm{E}_{\mathrm{ce}}=9615.38$
$\Delta_{\text {creep }}=57.73 \mathrm{~mm}$
$\Delta_{\text {total }}=36.56+5.06+57.73=99.355 \mathrm{~mm}$

7. Design of well cap

Since no direct load is coming on well cap, minimum should be provided.
i.e. 0.12% of gross sectional area

$$
\begin{aligned}
& =\frac{.12}{100} \times 1500 \times 1000 \\
& =1800 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 18 mm . diameter bar at $300 \mathrm{c} / \mathrm{c}$ on top and bottom faces of the well cap at a clear cover of $\mathbf{7 5} \mathbf{~ m m}$.
A_{st} provided $=2035.75>1800 \mathrm{~mm}^{2} \quad$ O.K.

8. Design of well steining

Lateral load acting on well $=359.4+100.07 \mathrm{kN}$

$$
=459.47 \mathrm{kN}
$$

Distance of lateral load from base of well $=19.42 \mathrm{~m}$.
The resultant earth pressure force at depth ' y ' below M.S.L. is given by :

$$
=0.5 \times \gamma_{\text {sub }} \times\left(K_{p}-K_{a}\right) \times y^{2} \times D_{e}
$$

Equating the lateral loads at depth y gives the location of zero shear (and max. moment section).
$459.47=0.5 \times 10 \times(3.25-.31) \mathrm{x} \mathrm{y}^{2} \times 9$

$$
\mathrm{y}=1.86 \mathrm{~m}
$$

weight of well steining of 1.86 m height

$$
\begin{aligned}
& =\frac{\pi}{4} \times\left(9^{2}-6^{2}\right) \times 1.86 \times 25 \\
& =1643.45 \mathrm{kN}
\end{aligned}
$$

Moment of lateral forces about section of zero shear

$$
\begin{aligned}
\mathrm{M} & =459.47 \times(18.22-9+1.86) \\
& =5090.93 \mathrm{kNm}
\end{aligned}
$$

Total axial load at section of zero shear
$=$ Load from tower + Weight of pedestal + Weight of outriggers + Weight of well cap + Weight of steining

$$
\begin{aligned}
& =(4 \times 1066)+(4 \times 18.75)+(4 \times 355.76)+\left(\frac{\pi}{4} \times 9^{2} \times 25\right. \\
& \quad \times 1.5)+1643.45 \\
& =9791.14 \mathrm{kN}=\mathrm{P}
\end{aligned}
$$

Area of cross section of steining $=\frac{\pi}{4} \times\left(9^{2}-6^{2}\right)=35.34 m^{2}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{yy}} \\
&=\frac{\pi}{64}\left(9^{4}-6^{4}\right)=258.44 \mathrm{~m}^{4} \\
& \mathrm{y}=\frac{D_{e}}{2}=4.5 \mathrm{~m}
\end{aligned}
$$

The stresses in the steining

$$
\mathrm{f}_{1,2}=\frac{P}{A} \pm \frac{M y}{I}
$$

putting the values we get.
$\mathrm{f}_{1,2}=277.06 \pm 88.64$
$\mathrm{f}_{1}=.365 \mathrm{MPa}<8 \mathrm{MPa}$
$\mathrm{f}_{2}=.188 \mathrm{MPa}>0$
Both the stresses f_{1} and f_{2} are compressive and significantly smaller than the allowable stresses for M-25 grade concrete. Hence, the steining section is safe.

Reinforcement in well steining

Provide vertical steel $=0.12 \%$ of gross sectional area $=$ $11907 \mathrm{~mm}^{2}$

Provide vertical steel equally on both faces of steining.
\therefore Area of vertical steel on each face $=21206 \mathrm{~mm}^{2}$
Provide 48 Nos. of equally spaced 25ϕ bars on the inner and outer faces of the steining. Keep the vertical bars equally spaced.

Area of vertical steel provided $=23561.94>21206 \mathrm{~mm}^{2}$, Hence O.K.
Provide hoop steel at 0.04% of the volume per unit height of steining.
\therefore Volume of hoop steel per ' m ' height of steining.

$$
\begin{aligned}
& =\frac{0.04}{100} \times \frac{\pi}{4} \times\left(9^{2}-6^{2}\right) \times 1.0 \\
& =.014137107 \mathrm{~m}^{3} \\
& =141.37107 \mathrm{~mm}^{3}
\end{aligned}
$$

Volume of hoop steel required on each face $=7068583.5 \mathrm{~mm}^{3}$
Total cross-sectional area of hoop bars required on each face per meter height of steining.

$$
=\frac{7068583.5}{[\pi \times(9000-75-5)]}=252.24 \mathrm{~mm}^{2}
$$

Provide 12ф hoops in the form of closed rings on both the inner as well as the outer face of the well steining @ 250 mm c/c.
Area provided $=452.39 \mathrm{~mm}^{2}>252.24 \mathrm{~mm}^{2}$ O.K.

9. SAP Model of Steining

To check the hoop stresses on the steining, a modelling on SAP has been done

As can be seen from the stress contours all the stresses are within the permissible limits for M25. Hence steining is safe.

10. Design of well curb

Provide normal steel at $72 \mathrm{~kg} / \mathrm{m}^{3}$ in the well curb. Vol. of concrete in well curb

$$
\begin{aligned}
& =\frac{1.6+.15}{2} \times 3 \times \square \times\left[9-\left(\frac{1.6-.15}{2}\right) x 2\right] \\
& =62.26 \mathrm{~m}^{3}
\end{aligned}
$$

Total weight of steel in well curb $=72 \times 62.26$

$$
=4482.72 \mathrm{~kg}
$$

Consider the following arrangement of steel in well curb.
(i) 40 nos. of 25ϕ hoops of average dia. $=7.25 \mathrm{~m}$.
\therefore Weight provided $=3510.6491 \mathrm{~kg}$.
(ii) $20 \mathrm{~mm} \phi$ triangular at $280 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
\therefore Total no. of rings $=80$
Average Length of one ring

$$
=(1.6-(2 \times 0.075))+(3-(2 \times 0.075))+(3.332-2.075)
$$

$$
=5.557 \mathrm{~m}
$$

\therefore weight of 80 stirrups.

$$
=80 \times \frac{\pi x 0.020^{2}}{4} \times 5.557 \times 7850=1096.35 \mathrm{~kg}
$$

Total weight of steel provided in well curb

$$
\begin{aligned}
& =3510.65+1096.35 \mathrm{~kg} \\
& =4607>4482.72 \mathrm{~kg}
\end{aligned}
$$

Hence O.K.

CONCLUSION

SAP modeling has been carried out to check the stress contours for all the stresses are within the permissible limits for M25 or not And it is found that all the stresses are in permissible limit. Hence steining is safe.

References

1. IRC : 6-2000. Standard Specification and Code of Practice for Road Bridges, Section II, Loads and Stresses (Fourth Revision). The Indian Roads Congress, New Delhi, 2000, 29 pp.
2. IRC : 78-2000. Standard Specification and Code of Practice for Road Bridges, Section VII, Foundation and Substructure (Second Revision). The Indian Roads Congress, New Delhi, 2000, 97 pp.
3. IS Indian Standard. Code of Practice for Design and Construction of Well Foundation. IS, Bureau of Indian Standard, 1967, IS 3955-1967.
4. IS Indian Standard. Plain and Reinforced Concrete- Code of Practice. IS, Bureau of Indian Standard, 2000, IS 456: 2000.
5. Pillai, S Unnikrishna and Menon, Devdas. Reinforced Concrete Design, $3{ }^{\text {rd }}$ edn., McGraw-Hill, New Delhi, 2010.
6. Punmia B.C., Jain A.K. and Jain A.K. Soil Mechanics, $16^{\text {th }}$ edn., Laxmi Publications, New Delhi, 2005.
7. SP Special Publication. Handbook on Concrete Reinforcement and detaiing. Bureau Of Indian Standards, 1987, SP34: 1987
